schoenberg - think MINI:




neuronales Netz: einfaches Beispiel mit JavaScript

erstellt am: 17.05.2018 | von: PRIVAT | Kategorie(n): Allgemein, JavaScript


Lieber XING-Kontakt, vielen Dank für Ihren Besuch!

Maschinelles lernen „Machine Learning“ ist ein Teilbereich von künstlicher Intelligenz bzw. Artificial Intelligence (englisch). „Machine Learning“ bedeutet, dass Systeme selbständig Wissen aus Erfahrungen generieren können. Die Vorteile von Machine Learning liegen darin, dass solche Systeme nicht nur exakt übereinstimmende Daten erkennen, sondern mittels Muster und Gesetzmäßigkeiten auch unbekannte Daten, sowie auch größere Datenmengen verarbeiten und beurteilen können.

Bei der Umsetzung unterscheidet man zwischen symbolischen Systemen (induzierte Regeln) und subsymbolischen Systemen (implizites Wissen) wie neuronale Netze, die auch in der Praxis sehr häufig eingesetzt werden.

Dabei erfolgt das Erlernen aus Erfahrungen durch ein sogenanntes überwachtes Lernen bzw. supervised learning (englisch). Dabei erhält der Algorithmus unterschiedliche Eingabewerte (Input-Layer) und aufgrund der anfangs zufällig festgelegten Gewichte im Netz werden Ausgabewerte (Output-Layer) ermittelt (Forwardpropagation). Entspricht diese Ausgabe nicht dem korrekten Ergebnis, so wird entweder automatisch aufgrund Trainingsdaten bzw. von einem „Lehrer“ das errechnete Ergebnis korrigiert.

Der Algorithmus errechnet dann den Fehler und passt die Gewichtungen im neuronalen Netz an (Backpropagation). Ziel ist es die Gewichte im neuronalen Netz so einzustellen, dass der Output nach der Trainingsphase (unüberwachtes Lernen) möglichst immer ein korrektes Ergebnis ausgibt.

Darunter habe ich ein sehr vereinfachtes Beispiel mit JavaScript programmiert. Dabei wird (links) eine zufällig ausgewählte Farbe eingeblendet und mittels neuronalen Netz ermittelt das Script die Farbe als Wort z.B. Orange, … Aufgrund der anfangs zufällig festgesetzten Gewichtungen, sind diese errechneten Ausgabewerte oftmals falsch. Sie können dann zum Ausprobieren (rechts) auf das korrekte Wort klicken. Anschliessend passt das Skript dann die Gewichte im neuronalen Netz an. Nach mehreren solchen Wiederholungen sollte der errechnet Ausgabewerte immer öfter korrekt sein.

Da bei diesem sehr vereinfachten Beispielskript allerdings das Problem auftritt, dass es die Farben „Orange“ und „Blau“ aufgrund errechneter Ausgabewerte beinahe nicht unterscheiden kann, lassen sich daran auch wichtige Voraussetzungen erkennen. Und zwar muss zuerst eine geeignete Abbildungsvorschrift gefunden werden, sowie auch eine optimale Anzahl der sogenannten Hidden Neurons. Da ich in diesem vereinfachten Beispiel im Hidden-Layer 2 nur 4 Bereiche eingefügt habe (zur übersichtlicheren Darstellung), führt dies auch zu soeben erwähntem Problem (Blau <-> Orange).

Hinweis: als Schwellenwert für die Aktivierung der Sigmoidfunktion (Hidden-Layer 1, Farbe Blau) habe ich einen Farbanteil (Blau) von 80 eingestellt.

Unter dem folgenden Link habe ich ein 2-seitiges Ebook zu diesem Thema erstellt. Dieses können Sie hier downloaden .. Ebook „künstliche Intelligenz“.

und hier wie immer ein Glitze-Kleines-Bisschen Werbung :-(

schoenberg - think MINI


Tools, Software & Programme aufgrund DSGVO leider nicht mehr verfügbar !! Fehler, Irrtümer, usw. nicht ausschließbar!

vielen Dank für Ihr Verständnis und Ihnen schöne Grüße,

Christian Schönberg (privater Blogartikel)

XING.com - Netzwerk für Beruf und Leben     Facebook     Twitter



andere Besucher, die diesen Artikel gelesen haben, fanden auch diese Blogbeiträge interessant:

Videoclips und Animationen mit HTML5-Animationstool erstellen

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Wie schon in vorherigen Artikeln beschrieben, ......
den ganzen Artikel lesen ...


HTML5: online Spiele erstellen mit JavaScript und PHP

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Noch vor einigen Jahren wurde als Plattform z ......
den ganzen Artikel lesen ...


Softwaretool: CPS bzw. CPA berechnen

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Im Internet Marketing liest man sehr oft die ......
den ganzen Artikel lesen ...


Softwaretool: Zeit in Sekunden messen

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Wenn man wissen will, wie lange ein bestimmte ......
den ganzen Artikel lesen ...


WebGL-Anwendung: Zauberwürfel

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Beinahe die meisten Webbrowser unterstützen ......
den ganzen Artikel lesen ...


Beispiel von einem Video Sales Letter

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Sales Letter bedeutet auf deutsch "Verkaufsse ......
den ganzen Artikel lesen ...


PHP-Script: Foto in Malbuch-Bild umwandeln

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Wie darunter dargestellt, habe ich ein kleine ......
den ganzen Artikel lesen ...


Windows App 8 nachgemachte Desktop Anwendung

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Sie kennen sicherlich die neuen Windows 8 App ......
den ganzen Artikel lesen ...


Softwaretool Bildschirmvideo (Audio + Video) erstellen (für Windows und MAC)

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Zum Beispiel für eine kleine Präsentation o ......
den ganzen Artikel lesen ...


iPhone App mit Objective-C (xCode) programmiert

Lieber XING-Kontakt, vielen Dank für Ihren Besuch! Apps für iPhones habe ich schon einige progr ......
den ganzen Artikel lesen ...